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Abstract

Finite element meshes constructed from 3D images are useful in material science and medical

applications when it is necessary to model the actual geometry of a sample, rather than an idealized

approximation of it. Constructing the mesh involves computing the intersection of the mesh ele-

ments with the voxels (3D pixels) of the image. If done naively, this process is unstable, and small

errors in the computed position of an intersection point can lead to large errors in the computed

volume. We demonstrate the source of the instability and present a robust and efficient method of

doing the computation, based on the r3d algorithm of Powell and Abel.
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I. INTRODUCTION

When computationally modeling a complex object, it is often convenient to begin with

an image of the object. For example, in materials science, a material may comprise many

different grains with different shapes, compositions, and orientations, as shown in Fig. 1.

Simulating the behavior of a 3D region provides insight into the behavior of the material as

a whole. Basing the simulation on a micrograph of the material ensures that it accurately

reproduces the geometry of (at least) one particular instance of structure.1 Similarly, a

medical image might provide the real geometry of a bone, and a simulation based on the

image could compute the bone’s strength and other properties.2

The Object-Oriented Finite element (OOF) software developed at the National Institute

of Standards and Technology (NIST) uses finite element analysis to compute properties of

complex materials, starting from experimental or simulated micrographs. When the project

began, creating 3D micrographs was difficult, tedious, and uncommon, so OOF13 and OOF24

worked only in 2D, using 2D physical approximations. 3D micrographs are now common,

and the third major revision of OOF, OOF3D5, creates 3D meshes and uses 3D physics.

This paper describes part of the mesh generation method in OOF3D. However, the method

is applicable to any 3D technique for meshing images.

Mesh generation in OOF begins by first segmenting an image, assigning material prop-

erties to each pixel, and/or putting pixels into user-defined groups. (We will sometimes use

the words “pixel” and “voxel” interchangeably, to avoid excess verbiage.) For the purposes

of this paper, all that matters is that pixels can be categorized, and that pixels in one group

are somehow different from pixels in another group. For a finite element mesh to be an

accurate representation of the geometry of the image, one requirement is that each element

be as homogeneous as possible – that is, it should overlie pixels of only one group, consid-

ering that pixels are rectangles and voxels are rectangular prisms, not points. A typical

inhomogeneous element is shown in Fig. 2. Note that it is always possible to create a com-

pletely homogeneous mesh by creating a single element per pixel, but this mesh would be

overrefined – it would resolve unphysical pixel corners and contain far more elements than

are usually required for a sufficiently accurate computation.

A simple way of computing the homogeneity of an element E would be to count the

number of pixel centers within the element for each pixel category. If there are ni(E) such
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FIG. 1. A scanning electron microscope image (a) of a cast cobalt-chrome alloy with metal carbide

inclusions, approximately 200 µm on a side. The light gray inclusions have a different composition

than the darker background, which consists of two regions with the same composition but different

crystalline orientations. The diagonal stripes and dark spots are artefacts of the sample preparation

process. Image courtesy of Adam Creuziger at NIST. The region in the white rectangle has been

meshed in (b) by OOF2.

pixels of category i, then the homogeneity could be defined as

hpoor(E) =
maxi ni(E)∑

i ni(E)
. (1)

This simple definition clearly fails when an element is small enough that very few (or zero)

pixel centers lie within it. Furthermore, it produces a homogeneity that is a discontinuous

and piece-wise constant function of the positions of the element’s nodes, which is undesirable

for many mesh modification tools. For example, a tool which moves nodes will find that

many small moves don’t change the homogeneity at all, providing no guidance on whether

or not moving a node in a given direction will improve the mesh.

A more robust way of defining the homogeneity is

h(E) =
maxi Vi(E)

V (E)
(2)
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FIG. 2. A screen shot from OOF3D. The yellow voxels have the same material type, which is

different from the material of the the other, invisible, voxels. The thin lines are the edges of the

elements in a uniform tetrahedral mesh. The element highlighted in red is inhomogeneous because

it contains both yellow and invisible voxels. The blue edges have been computed by the method

described here and outline the intersection of the yellow voxels and the red element.

where h(E) is the homogeneity of element E, and Vi is the volume (in 3D) or area (in 2D)

of the part of the element that intersects pixels of category i. The total volume (or area)

of the element is V =
∑

i Vi. The definition (2) of the homogeneity has the advantage that

it is a continuous function of the positions of the element’s nodes. Its main disadvantage is

that it is far more complicated to compute than the simple definition (1).
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FIG. 3. Finding the area of intersection of an element and a set of pixels in 2D. Intersections

between the pixel set boundary (red) and element boundary (blue) are marked as entrances (+)

or exits (-). Entrances are connected to exits counterclockwise along the element boundary and

elements are connected to exits counterclockwise along the pixel set boundary (black arrows).

In the remainder of this paper we first show how a naive way of computing Eq. 2 can run

into trouble, and then introduce a method based on the r3d algorithm of Powell and Abel.6

We show how the r3d method can fail in some cases, and how to fix it. Finally we discuss

a method for efficiently computing the polyhedral graphs required by the algorithm.

II. WHY IS THIS HARD?

The simplest way of computing the volume of the intersection between a set of voxels

and an element is to consider each voxel independently, and sum over them at the end.

This is slow and inefficient, even in 2D, and we won’t discuss it further. A more attractive

algorithm is to extract the boundary of the set of voxels, and compute its intersection with

the boundary of the element. In this way one can compute each facet of the intersection

region, and therefore its volume. OOF1 and OOF2 use this method, although it is not

without its subtleties.

For simplicity, we will demonstrate the method and one of its failure modes in 2D. Fig. 3
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FIG. 4. Failing to find the area of intersection of an element and a set of pixels in 2D. The entrances

and exits at node N1 are in the wrong order, so the green segments leaving the exit are incorrect.

shows a triangular element intersecting a set of pixels (which need not be simply connected).

We want to compute the area, A, of the shaded intersection, I (which need not be simply

connected). First, all of the pixels of a given type are aggregated, and their boundary is

extracted, as shown in red. Then the intersection points between the segments of the pixel

boundary and the segments of the element boundary are detected. If the element boundary

(shown in blue) is traversed counterclockwise, each intersection point can be labelled as an

entrance or an exit, depending on whether the element boundary enters or exits the pixel

set at that point. Then the new boundary segments of the intersection can be constructed

by following the element boundary from an entrance to the next exit, and following a pixel

set boundary from an exit to the next entrance. To compute the area, the segments don’t

even need to be linked into loops. If the segment i goes from point S0
i to S1

i , the area is

A =
1

2

N∑
i=0

(S0
i −C)× (S1

i −C) (3)

for some conveniently chosen center point C. To avoid loss of precision in the sum, C should

not be too far away from the segments.

Now consider what happens if the rightmost node of the element in Fig. 3 coincides with

the pixel set boundary at location N1, as shown in Fig. 4. Note that this is not at all an
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unlikely situation, since any algorithm that makes elements homogeneous will tend to put

nodes on pixel boundaries. There are a number of things that can go wrong. Round-off error

in the computations can lead to inconsistent information about whether point N1 is inside

or outside the pixel set, since it may make it seem that segment N0N1 intersects segment

AB but N1N2 doesn’t (or vice versa). Or if the program is smart enough to insist that N1

must be either inside or outside, but not both, it can still misplace intersection points on

segment AB, as shown in the inset. It’s possible that node N1 may be outside the element

(by an infinitesimal amount) but that the computed entrance intersection of segment N1N2

with AB might precede the exit intersection of N0N1 on AB. In this case, following the

pixel boundary from the the exit point to the entrance won’t connect the two points, but

will follow the green line, adding incorrect edges to the perimeter of I. Thus a microscopic

error in the position of the points can lead to a macroscopic error in the area A.

In 3D, the method and its failure modes are similar, except that both are more complex.

We want to find the volume, V , of the intersection, I, of a set of voxels with a convex

polyhedral element. First, the exterior of a set of voxels is divided into a set of facets. Each

facet is a set of pixels in a plane. The intersection of that plane with the element is a polygon,

and the intersection of that polygon with the pixels in the plane can be found using the 2D

algorithm. These in-plane intersections form part of the exterior of I. The remaining faces

of I lie on the faces of the element, and can be computed by finding the edges of the in-plane

intersections that lie on the element faces, and linking them, if necessary, along the edges

of the faces. All of the difficulties of the 2D method apply, with additional complications.

Is a point actually on a face? Actually on an edge? Which face is it on? What if a segment

appears to intersect only one face of the element but both of its endpoints appear to be

outside?

In 2D, these difficulties can be overcome by careful bookkeeping and using simple geome-

try to resolve ambiguities, following a ”topology first” scheme. For example, in the example

of Fig. 4, the fact that two exits (-) appear consecutively is a clue that something is wrong.7

In 3D, detecting and correcting errors devolves into a forest of special cases and the resulting

code is fragile, inefficient, and untrustworthy.

Related problems in computational geometry have been solved by different methods, such

as arbitrary precision arithmetic.8 This paper presents an alternative approach that avoids

the issue of round-off error completely.
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III. POWELL AND ABEL’S R3D ALGORITHM

An algorithm by Powell and Abel,6 based on ideas from Sugihara,9 provides a robust

way of computing the intersection volume. Powell and Abel’s r3d algorithm is a way of

conservatively transferring data from one mesh to another so that integrals of the data

over the new mesh are the same as integrals over the old mesh. Their original paper6

described a method that computed integrals of polynomials over the intersections of two

convex polyhedra (the polyhedra being elements from the old and new meshes), but a

modified algorithm10 works even if one of the polyhedra is not convex. Importantly, the

algorithm is not subject to roundoff error. Unlike the naive method discussed in Section II,

small errors in arithmetic lead only to small errors in the results. We can use the method to

compute the volume of the intersections I — our element is a convex polyhedron, our voxel

set is a (possibly) non-convex polyhedron, and the polynomial that we are integrating is 1.

r3d works by constructing a planar graph of the non-convex polyhedron and clipping it

successively by the plane of each face of the convex polyhedron. The graph is isomorphic to

the non-convex polyhedron — nodes of the graph correspond to vertices of the polyhedron,

edges of the graph correspond to edges of the polyhedron, and they are connected identically.

(We will use the word “vertex” to refer to corners of the polyhedron, and “node” to refer

to the corresponding points in the graph.) If the polyhedron is sliced by a plane that

divides it into two (possibly more, if nonconvex) regions, r3d constructs the graph of the

new polyhedron on one side of the plane, using only information about which vertices are on

which sides of the plane. Powell and Abel explain that by preserving topological consistency

at all steps, and not relying on any arithmetic operations after deciding which vertices to

clip, the method is robust in the presence of numerical errors.

To be specific, when intersecting polyhedron P with convex polyhedron E , the process

is10:

1. Construct a planar graph of P , making sure that the edges at each node are in the

same order as the edges of the polyhedron at the corresponding vertex, when viewed

from outside the polyhedron. Figs. 5a and c show a polyhedron and its planar graph.

A planar graph is one that can be drawn in a plane with no crossing edges. Each

node must link to exactly three edges. (If a vertex of the polyhedron is on more than

three edges, that vertex must be represented by more than one node in the graph,
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FIG. 5. Clipping a single corner from a polyhedron composed of three voxels. (a) The unclipped

polyhedron, with three faces and edges labelled. The clipping plane is not shown, but passes

between the starred vertex and the rest of the polyhedron. (c) The graph of the polyhedron, with

corresponding faces and edges labelled. (d) The clipped node has been removed from the graph,

and new dangling nodes (circles) inserted. (e) The endpoints of a missing edge are discovered by

following graph edges from one dangling node to another, turning right at all intermediate nodes.

(f) The completed graph, after all dangling nodes are completed. (b) The clipped polyhedron,

reconstructed from the graph.
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possibly connected by edges of zero length.) The edges of the graph divide the plane

into regions that correspond to the faces of the polyhedron. Every convex polyhedron

can be represented by a planar graph.

2. Choose one of the faces of E . The clipping plane is the plane containing this face.

3. Remove the vertices of the graph that are outside the clipping plane, leaving dangling

edges, as shown in Fig. 5d. Put a new node at the end of each dangling edge. The

position of the corresponding vertex on the polyhedron can be found by interpolating

along the original unclipped polyhedron edge. If rounding error puts an intersection

point just past the end of the edge, it can be assumed to coincide with the endpoint.

The graph itself contains no position information, so in the graph the position of the

node is immaterial.

4. Choose one of the new nodes, N′. In Fig. 5e, this is node 3.

5. From N′, follow existing edges from node to node, always picking the right hand branch

at pre-existing nodes (all of which have three edges) until another new vertex, N′′, is

encountered. In Fig. 5e, this is vertex 2. It makes sense to refer to the “right hand

branch” because the graph is planar.

6. Add a directed edge from N′′ to N′, as shown in green in Fig. 5. The direction can be

used later to determine the outward normal of the face, but is not strictly necessary.

7. Go back to step 4 and repeat until all nodes have three edges, as in Fig. 5f.

8. Go back to step 2 and repeat for each face of the element E .

9. Find the facets of the clipped polyhedron by picking an edge of the graph and moving

from edge to edge, turning left at each node, until the original edge is reached. From

the edges, compute the area and normal vector of each facet, and from that the volume.

When the voxel set has concavities, it is possible that a clipping plane will intersect it

in more than one region. Fig. 6 illustrates one such situation and the application of the

algorithm to it. When both of the starred vertices in Fig. 6a are clipped, the intuitive

solution is to replace each with a triangular facet. The algorithm instead generates two

linked triangular facets, shown in Fig. 6b. However, the new vertices at points 3, 1, 4, and
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FIG. 6. Clipping two corners from the polyhedron of Fig. 5. (a) The unclipped polyhedron. The

starred vertices are outside the clipping plane and will be removed. (c) The polyhedral graph with

the clipped nodes removed. The unclipped graph is the same as Fig. 5c. (d) Following the graph

from new node 5 to new node 3 along the heavy black line creates an edge (green arrow) that

appears to span too much of the graph. (e) The completed graph. (b) The clipped polyhedron.

The heavy arrows indicate collinear edges of the new facets. The edges cancel each other out in

the region between the new triangular facets (dark gray).
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FIG. 7. Clipping another concave set of voxels. (a) A set of 7 voxels, arranged in a cube with one

corner missing. The corners marked with stars are outside the clipping plane and will be removed.

(b) The result of applying the r3d algorithm. There are two new faces denoted by the green arrows.

The faces are coplanar and oppositely directed, so the inner hexagonal face (abcdef) cancels the

interior of the outer triangular face (ABC).

5 are collinear (on the line formed by the intersection of the left face of the voxels and

the clipping plane), so between points 1 and 4 the bridge between the triangles comprises

two oppositely directed collinear segments. These make no net contribution to the area of

the facet or volume I of the clipped polyhedron, so this somewhat convoluted geometry is

harmless. (If the vertices were not collinear, the left face would necessarily be split into

multiple facets, which would introduce new edges in the graph, and the algorithm would no

longer connect vertices 3 and 5.) Similarly, in Fig. 7 a concave set of voxels is clipped so

that three corners are removed. In this case, there are two new coplanar facets, a triangle

and a hexagon, with oppositely directed normals. The triangular facet is indicated by the

heavy green arrows in the figure. The hexagonal facet, indicated by the thin arrows, cancels

the area of the interior of the triangular facet, so that net result is the three dark triangular

faces. Using directed edges when reconnecting the clipped graph makes it clear that the

hexagonal and triangular faces have opposing normals. Again, the result is correct for the

purpose of computing the volume of the clipped polyhedron.

To maintain topological consistency, r3d relies on the graph of the polyhedron being

3-vertex-connected, that is, not separable into two pieces by removing any two nodes. Poly-

hedra created from voxel sets can easily fail this test, but the algorithm still works with a

slight modification. Consider the polyhedron shown in Fig. 8, built from a 2× 2× 4 brick of

12



A1

2
B

C

3

4

B

A1

4

C

2

3

(a) (b) (c)

4

1
2

B

3

A

C

FIG. 8. Applying r3d blindly to an insufficiently connected polyhedron. (a) The voxels forming

the polyhedron. The vertices marked with stars are outside the clipping plane. (b) The graph

of the polyhedron, with some nodes and faces labelled for comparison with (a). (c) The result of

applying r3d to (b).

voxels, with 2 voxels removed from one side. The graph of this polyhedron, Fig. 8b, is not

3-vertex-connected, because it falls into two pieces if nodes 2 and 3 are removed. Now clip

the polyhedron with a plane that removes only vertices 2 and 3. This can only occur due to

numerical error, because a plane that clips vertices 2 and 3 must necessarily also clip either

vertex 1 or vertex 4 or both, but this is exactly the sort of numerical error that is expected

and must be handled. Applying r3d to Fig. 8b results in the disconnected pair of graphs

shown in Fig. 8c, with the new edges shown in green. The left hand part, containing face

C, is an inverted (negative volume) pentagonal prism. It is difficult to interpret the right

hand graph. Do the two oppositely directed edges cancel each other out? Does that leave

dangling nodes at their ends?

The fact that this situation must be the result of numerical error indicates how it should

be resolved. Vertices 1, 2, 3, and 4 must actually be collinear. (Any modification to the

polyhedron that makes them non-collinear without adding extra vertices between them also

restores 3-vertex-connectivity.) Infinitesimally perturbing the polyhedron by shaving a strip

off of the corner, as shown in Fig. 9, will not change its volume. The perturbed polyhedron

has two new faces, labelled ‘a’ and ‘b’, and its graph has 3-vertex-connectivity. Using r3d

to clip the four starred vertices produces the disjoint pair of graphs in Fig. 8c. The left
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FIG. 9. A perturbed version of Fig. 8. (a) The perturbed polyhedron, with two new infinitesimal

faces. Stars mark the vertices to be clipped. (b) The graph of the polyhedron. The doubled edges

are infinitesimal. (c) The result of applying r3d to (b).
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FIG. 10. Resolution of the problems in Fig. 8. Vertices 1 and 4 are joined directly (thin green line)

as are vertices 2 and 3 (thick green line). The inner polyhedron is subtracted from the outer one.

hand graph is again an inverted pentagonal prism, one face of which has two infinitesimal

edges. The right hand graph is a pentagonal prism with an infinitesimally thin facet that

is broken into three sub facets labelled a, b, and c, all positively oriented. Collapsing the

infinitesimal edges and faces leads to the graph and polyhedron in Fig. 10. (The arrows

have been dropped from the new edges, because they no longer belong to new faces whose
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orientation must be determined.) The eight vertices on the thin facet in Fig. 9c are all

collinear so the facets collapse into a single line from vertex 1 to vertex 4. In other words,

the correct stratagem is not to connect nodes 2 and 3 in Fig. 8c with a double edge, but

to connect nodes 1 and 4 with a single edge. The final graph is two separate quadrilateral

prisms, one of which is inverted. The polyhedron is formed by the subtraction of the smaller

polyhedron from the larger, and its net volume is the same as the initial set of voxels in

Fig. 8, as it should be.

Computationally, it is difficult and expensive to verify 3-vertex-connectivity and to know

when this procedure will need to be imposed. However, it is fast and easy to check for

doubled edges in the graph, and to repair them by replacing them and the single edges on

either side (i.e, 1234 in Fig 8c) with one single edge (14 in Fig 10a).

IV. CONSTRUCTING GRAPHS OF VOXEL SET BOUNDARIES

Before r3d can be applied to a segmented image, the graph of each voxel set must be

found. This can be a time consuming procedure, but it can be done just once, and doesn’t

need to be repeated unless the voxel categories change. Here we discuss how this is done in

OOF3D, using C++.

A. Algorithm Components

It’s convenient to first describe the classes that we use to represent the voxel set boundary

and its graphs.

A VoxelSetBdy describes a voxel set boundary. It creates a graph from an image and

computes intersections.

A VSBGraph is the graph of the boundary edges of a voxel set. It is contained in a

VoxelSetBdy.

A VSBNode is a node in a VSBGraph. Each VSBNode knows its neighboring nodes, and its

position in space.

A ProtoVSBNode is a point in the image at a corner where voxels meet, and encodes the

geometry of the voxel set at the corner.

The algorithm constructs a VSBGraph of the voxel set boundary. The first step of the algo-
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rithm is to identify relevant voxel corners, which are associated with ProtoVSBNode objects.

The ProtoVSBNode object sub-types reflect the local geometry, which in turn determines

how many (zero or more) VSBNodes are required for each ProtoVSBNode. Finally, using the

geometry encoded in the ProtoVSBNodes, the appropriate edges are inserted between the

corresponding VSBNodes, the ProtoVSBNodes are discarded, and the graph is now complete.

B. Creating Proto Nodes

The first step in building a graph is constructing an array of ProtoVSBNode (Proto Voxel

Set Boundary Node) pointers, one for every voxel corner in the image. If the image is k×l×m

voxels, the array size is (k + 1) × (l + 1) × (m + 1) because the ProtoVSBNodes live at the

corners of the voxels, not the centers. Each ProtoVSBNode contains information about the

eight voxels that meet at that point in the image. A voxel is occupied if it’s in the current

category. (On the image edges, the non-existant voxels outside the image are considered

to be unoccupied.) Assigning a 1 to an occupied voxel and 0 to an unoccupied voxel and

arranging the bits in an arbitrary but consistent order reduces the local configuration of

eight voxels to a one byte signature. (See Fig. 11.) There are different ProtoVSBNode

subclasses for different signatures. Although there are 256 signatures, only 17 ProtoVSBNode

subclasses are needed, because voxel configurations that can be rotated into one another are

represented by a single class. For example, one ProtoVSBNode subclass covers all of the

eight configurations that have only one occupied voxel. Another subclass covers the 24

orientations of the configuration of three occupied voxels in Fig. 12. A ProtoVSBNode of

the correct subclass is created at each voxel corner using a signature-based lookup table,

storing the rotation required to bring the actual voxel configuration into alignment with the

subclass’s reference orientation. A ProtoVSBNode is not allocated for the 38 configurations

of voxels that don’t correspond to a corner in the aggregated voxel set.

C. Creating Graph Nodes

The second step is to create a new empty VSBGraph object, and for each ProtoVSBNode to

create one or more VSBNodes in it. The VSBGraph is mostly just a container for VSBNodes. A

VSBNode stores its position in the image and pointers to its three neighboring VSBNodes in the

16



X

Z

y

00000010

00001000

00000100

00000001

0001000000100000 0100000010000000

FIG. 11. The geometry of a ProtoVSBNode. The green circle is the position of the node. The binary

digits are the labels of the eight neighboring voxels. A voxel is occupied if it’s in the category whose

graph is being computed. The signature of the ProtoVSBNode is the bitwise-or of the labels of the

occupied voxels.

FIG. 12. Two of the 24 voxel configurations in one of the ProtoVSBNode subclasses. The green

circle is the position of the ProtoVSBNode, and the occupied voxels are shaded. The green lines

show the directions in which this ProtoVSBNode needs to look for neighboring ProtoVSBNodes when

connecting the graph.

graph (thereby mixing information from the real-space and graph-space representations of

the polyhedron). In an unclipped graph, a VSBNode’s position is at integer voxel coordinates,

but node positions in a clipped graph are not constrained and must be stored as floating

point numbers. The list of pointers to neighbors is ordered so that neighbor (i + 1) mod 3
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FIG. 13. A polyhedron formed from two voxels that touch at a corner, and its graph, which

consists of two independent sections. The central vertex of the polyhedron is represented by two

nodes (drawn inside the shaded circle) in the graph.

is clockwise from neighbor i, which facilitates graph traversal in the r3d algorithm.

A single ProtoVSBNode must create more than one VSBNode when there are more than

three edges that meet at a point. A simple example is the case of two voxels (or any two

rectangular blocks of voxels) that touch at a corner, as shown in Fig. 13. The graph of this

polyhedron has two independent parts, although one node in each part shares its position

with a node in the other. The ProtoVSBNode at that point creates two VSBNodes and links

to six edges.

The colocated graph nodes in Fig.13 are not connected directly to one another, and should

not be connected because they don’t share faces of the polyhedron. Some ProtoVSBNodes,

however, require the addition of multiple VSBNodes connected to one another by edges of

length zero. One example is shown in Fig. 14.

D. Connecting Graph Nodes

The third step in constructing the graph is to add edges connecting the VSBNodes. The

ProtoVSBNodes at each point know in which directions they connect, so they can search

in those directions for their nearest neighbors. The two ProtoVSBNodes at either end of a

edge then collaborate to decide which of their VSBNodes should be connected to one another,

and, importantly, how the edges must be inserted into the VSBNodes so that they are in the

correct order for r3d.

The ProtoVSBNodes do all of the work in determining how VSBNodes should be connected,
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FIG. 14. (a) A ProtoVSBNode for a configuration of four voxels (one is hidden) in its reference

orientation. The green edges are the ones that connect to neighboring nodes. (b) A section of the

graph created by the ProtoVSBNode. Six VSBNodes are required. The edges between them have

zero length. The numbers indicate the indexing used internally to ensure that the correct edges

are connected to the nodes.

because they have complete information about the local voxel structure. Each ProtoVSBNode

subclass knows which of its VSBNodes connect to the graph edges in each direction in its

reference orientation. For example, Fig. 14b shows the configuration of nodes and edges

for the ProtoVSBNode shown in its reference orientation in Fig. 14a. The VSBNode num-

bered 0 connects to the VSBNodes numbered 1 and 5 and to a VSBNode created by the next

ProtoVSBNode in the +x direction.

The actual connection process falls into one of three categories, described in the following

subsections.

1. Connecting a Single Pair of Nodes

Connecting two VSBNodes in the same ProtoVSBNode is trivial, because the ProtoVSBNode

contains all of the information that it needs. The simplest non-trival case is when two

ProtoVSBNodes must connect their VSBNodes along a direction that requires a single edge

(ie, a situation like that in Figs. 12 or 14 but not Figs. 15 or 16). For two ProtoVSBNode

objects A and B to figure out which of their VSBNodes connect along which edges, A calls
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FIG. 15. A situation requiring both coincident nodes and coincident edges in the graph. The two

blocks of the polyhedron (a) could be single voxels or blocks of voxels. They share the green edge.

The graph (b) is the same as the graph of two cubes, although the two nodes at point 1 coincide, as

do the nodes at point 2. Both green edges correspond to the green edge in (a). When constructing

the graph, it is important that the nodes are connected correctly. Misconnecting nodes along the

doubled edge as in (c) results in a graph that is not 3-vertex-connected.

B.connect(A). B finds the spatial direction from itself to A, rotates the direction into its

(B’s) reference frame, and thereby knows which connection is being made. For example,

if B is the ProtoVSBNode in Fig. 14, and A is in direction +y in B’s reference orientation,

then it’s connecting to B’s node number 2. B.connect knows which of its VSBNodes, bnode,

needs to be connected, but it doesn’t know which of A’s to connect to. To find out, it

calls A.connectBack(B, bnode), which finds the appropriate VSBNode (anode) in A, inserts

bnode in the correct slot, and returns anode, which B.connect can now insert in the correct

neighbor slot in bnode. (Simple!) ProtoVSBNode.connect and ProtoVSBNode.connectBack

are virtual functions, defined independently in each ProtoVSBNode subclass, enabling the

connection process to depend on the local geometries of both ProtoVSBNodes.
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C
BA

C

FIG. 16. (a) A polyhedron that yields a doubled graph edge, as in Fig. 15, but in a non-trivial

environment. The green edge in the polyhedron, where two voxels touch edge-wise, will become

two edges in the graph. The two facets labeled C are coplanar. (b) The graph of the polyhedron,

with the green edges from (a) highlighted. (c) The clipped graph, after the vertices marked with

stars in (a) and (b) are removed. The heavy lines and circles mark the new vertices and edges. (d)

The clipped polyhedron.

(a) (b) (c)

FIG. 17. (a) The nodes on the doubled edge in the polyhedron in Fig. 16 are connected incorrectly.

The graph is nonplanar. (b) The result of using r3d to remove the starred nodes from (a). The

circles represent new nodes. Green lines show one plausible but incorrect facet. The red lines show

r3d’s path through the graph when starting at the red node. The path returns to its starting node,

indicating that the algorithm has failed. (c) The polyhedron represented by (b), drawn on top of

the correctly clipped polyhedron from Fig. 16. The incorrect path is marked in red.
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2. Connecting a Double Pair of Nodes

Some varieties of ProtoVSBNode need to create two graph edges in the same spatial

direction. Fig. 15 shows a simple example. There there are 5 edges at each of the vertices

marked 1 and 2, which are both represented by two graph nodes. The vertices share the

same location in physical space, but the nodes are distinct in the graph topology. If the

wires are crossed, so to speak, the resulting graph may not have the required connectivity

and may produce incorrect results when clipped. Fig. 15c is not 3-vertex-connected, but as

it happens this configuration doesn’t cause a problem for r3d. Fig 16, on the other hand,

shows a case in which misconnection of the edges produces a graph for which r3d results

in nonsense, as seen in Fig. 17. We should not expect r3d to work on Fig. 17a, because

the graph is not planar, but this illustrates the importance of ensuring that the connection

procedure guarantees planarity.

Note that the two graph edges that leave the two VSBNodes in each of the ProtoVSBNodes

always lie along the edges of two voxels that share an edge, as in Figs. 15 and 16. Call these

the key voxels. Thinking of the key voxels as having an infinitesimal gap between them, each

of the two graph edges follows the edge of its own voxel, and connects to the graph node

associated with the same key voxel at both ProtoVSBNodes. The key voxels must have the

same relative spatial positions in both ProtoVSBNodes (in real space, not necessarily in the

reference orientation of the ProtoVSBNode), or else there would be another ProtoVSBNode

intervening between A and B. Therefore, the correct way to connect the VSBNodes is to find

the corresponding key voxels in each ProtoVSBNode and connect the VSBNodes that belong

to the edges of those voxels. However, A and B may be in different ProtoVSBNode subclasses,

with different orientations, and do not know the correspondence between their sets of key

voxels.

If the key voxels at A are i and j, let pAi and pAj be their real space coordinates, and let NA
i

and NA
j be the corresponding VSBNodes. pAi and pAj are vectors with integer coordinates, and

we define an arbitrary but self-consistent greater-than operator for such vectors. (We are

guaranteed that pAi 6= pAj .) Because the key voxels in B must have the same relative position

as the key voxels in A, pAi > pAj ⇐⇒ pBk > pBl if k and l are the key voxels in B that correspond

with i and j in A. This tells us how to connect the nodes. In the program, A.connect(B) finds

A’s key voxels and passes the ordered pair to a virtual function, B.connectDoubleBack(A,
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FIG. 18. A special case. The ProtoVSBNode (a) needs to create a single VSBNode with three edges

(b) and also allow neighboring VSBNodes in the ±z directions to connect directly to one another.

Creating a temporary VSBNode (c) with only two edges allows the connection process to involve

only nearest neighbor ProtoVSBNodes.

N0, N1), where N0 is a pointer to the VSBNode whose key voxel has the larger position

and N1 is a pointer to the other. B.connectDoubleBack figures out which of its key voxels

has the larger position, sets the neighbor pointers in its VSBNodes, and returns them as an

ordered pair. A.connect(B) can then set the neighbor pointers in its own nodes correctly.

3. A Special Case

There is one more subtlety to the node connection procedure. The ProtoVSBNode con-

figuration shown in Fig. 18a contains two stacked voxels with a third sharing an edge with

one of the other two. The ProtoVSBNode needs to create one VSBNode connecting along

all three edges of the third voxel. Another graph edge passes through the ProtoVSBNode

along the edge of the stacked voxels, but doesn’t connect to a VSBNode there. This causes

a problem, because that extra edge means that this ProtoVSBNode sits between two other

ProtoVSBNodes that need to connect to one another, but ProtoVSBNodes always connect to

their nearest neighbors. The expedient solution is to allow it to create a VSBNode with only

two edges, as shown in Fig. 18c. Then after all connections are made, those nodes and their

edges can be removed and replaced by a single edge.

23



E. Cleaning Up

Finally, after all connections are made, all of the ProtoVSBNodes can be deleted.

V. ACCURACY CHECKS

To check the accuracy of the algorithm, we used OOF3D to create artificial microstruc-

tures containing two categories of voxels and superimposed finite element meshes on the

microstructure. We calculated the volumes of the elements in two ways: Vg is the geometric

volume, using just the positions of the nodes, while Vr uses r3d to find the intersection of the

element with each voxel category, and sums over categories. For each element we found the

relative error, E = |Vr − Vg| /Vg, and computed its average, Ē, standard deviation, δE, and

maximum over the entire mesh, Emax. In addition, we computed the total volume, V i
t of each

voxel category i by summing the r3d results in each element and also by simply counting the

number of voxels Ni in each category in the entire microstructure, multiplied by the volume

of a voxel. The relative discrepancy between these two results, Ei = |V i
t −NiVvox| /(NiVvox)

gives another error estimate for each category.

All tests were performed on microstructures that were cubes of side 1 (in arbitrary units).

The cubes were divided into M×M×M voxels. A uniform finite element mesh was created

by dividing the microstructure into Nx × Ny × Nz cubes, and splitting each cube into 5

tetrahedral elements. Usually, we took Nx = Ny = Nz ≡ N .

As a baseline check, we used only one category of voxel, making all intersection calcu-

lations trivial. With M = 50 and N ranging from 1 to 50, Ē increased roughly linearly

from 6.3 × 10−16 to 1.5 × 10−14, with δE ≈ Ē at each N . The largest value of Emax was

1.6 × 10−13. The error in the total volume of the category, E0, was larger and noisier as a

function of N , but still always below 7× 10−12. (Machine epsilon was 2× 10−16.)

Nontrivial tests were done with two different microstructure geometries, both using two

categories of voxels. In the first geometry, voxels were randomly assigned to one of two

categories with probability p. In the second geometry, all voxels within a set of randomly

placed and possibly overlapping spheres were in one category, and voxels outside the spheres

were in another. The number of spheres, their mean radius, and the width of the radius

distribution were adjustable. All randomized configurations were repeated at least 20 times.
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Using M of 5, 50, and 100, and N of 4, 10, 11, no errors greater than 10−14 were observed in

any runs of either geometry. The error magnitude increased when the elements’ aspect ratio

was allowed to vary, but even setting Nx = 10000, Ny = NZ = 1 only raised the average

error Ē to 1.3 × 10−12 and Emax to 1.2 × 10−11 (in a run with M = 100 and 60 spheres of

mean radius 0.15).

The largest errors observed in any run occurred when the mesh was modified by moving

nodes at random (while ensuring that elements were still well-formed). In one case, an

element with a y-dimension that was 10−3 times its x and z dimensions had an error E

of 3 × 10−10 (using a microstructure of 100 spheres with mean radius 0.1, M = 100, and

N = 4). No larger errors were observed.

Given these results, it is reasonable to assume that errors in the calculation of ele-

ment/voxel intersections will be negligible compared to other sources of error, such as finite

element discretization or numerical error in the solution of PDEs.

VI. OPTIMIZATIONS

The elements of a mesh representing an image may be large on the scale of the voxels in

the image, but are generally going to be small on the scale of the image itself. This means

that if a graph is constructed from the whole image, a lot of time in the graph traversal

process will be spent eliminating voxels that are far from the current element. The process

can be made much more efficient if the image is first sliced up into bins that are a bit larger

than the average size of an element, and separate graphs are created for each bin. Then only

graphs whose bins intersect with the bounding box of the element need to be considered. A

disadvantage of this method is that the graphs need to be recomputed occasionally if the

mesh is refined and the average element size changes greatly.

If the image is very large, it may be inconvenient to create and store the full array of

ProtoVSBNodes. It may be more efficient to create the ProtoVSBNodes on demand, and to

delete them when they’re known not to be needed. ProtoVSBNodes only need to look for

neighbors in the positive x, y, and z directions. If the loop over nodes is done in the positive

direction, all nodes with x positions less than the current value of x can safely be deleted.

(This optimization has not yet been implemented in OOF3D.)
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VII. OBTAINING THE CODE

The method described here is used in OOF3D but could be useful in other contexts

in which convex polygons intersect image data. The implementation used in OOF3D is

independent of other aspects of OOF3D so that it can be easily incorporated in other

projects. It may be downloaded from http://www.ctcms.nist.gov/oof/vsb. OOF3D may

be downloaded from http://www.ctcms.nist.gov/oof/oof3d. The voxel set boundary

code is in OOF3D’s SRC/common/VSB subdirectory. Both downloads are free.
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